
XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 1

© Copyright 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners.

Summary This application note describes an in-the-field upgrade of the Spartan®-6 FPGA bitstream,
Linux kernel, and loader flash images, using the presently running Linux kernel. Upgrade files
are obtained from a CompactFlash storage device or over the network from an FTP server.

Included
Designs

Included with this application note is one reference design built for the Xilinx® SP605 Rev C
board. The reference design is available in the following ZIP file available at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=144349

Introduction New features and bug fixes often necessitate upgrading flash images to replace the existing
FPGA bitstream, bootloader, Linux kernel, or file system. This presents a challenge to provide
a convenient mechanism for end users to perform this task. This application note provides a
reference design and an example methodology to perform an in-the-field flash upgrade. New
images can be retrieved from a CompactFlash device or from a network server. The running
Linux image performs the flash upgrade.

Target Audience This application note best serves users who are already adept at building and using Linux.

Hardware and
Software
Requirements

The hardware and software requirements for this reference design are:

• Xilinx SP605 Rev C board

• RS-232 serial communication utility (HyperTerminal)

• Xilinx Platform Studio v11.4

• Xilinx ISE® Design Suite v11.4

• Xilinx Open-Source Linux

• Suitable MicroBlaze® processor toolchain and Linux root file system

• (optional) GIT revision control software

• Ethernet cable

• FTP server

Application Note: Spartan-6 FPGAs

XAPP1146 (v1.0) May 5, 2010

Embedded Platform Software and Hardware
In-the-Field Upgrade Using Linux
Author: Brian Hill

https://secure.xilinx.com/webreg/clickthrough.do?cid=144349
http://www.xilinx.com

Reference Design Specifics

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 2

Reference
Design
Specifics

The supplied MicroBlaze processor reference design is configured to boot from Block RAM.
The design also contains a DDR3 memory controller, IIC master, interrupt controller, tri-mode
Ethernet MAC, 16550 UART, GPIO, and SPI master (SPI flash) IP cores.

Address Map

Support Files

The reference design includes the files described in Table 2 that support this application note.

Table 1: Reference Design Address Map

Peripheral Instance Base Address High Address

lmb_bram_if_cntlr LocalMemory_Cntlr_D/I 0x00000000 0x00001FFF

mpmc DDR3_SDRAM 0x50000000 0x57FFFFFF

xps_ll_temac Soft_TEMAC 0x81000000 0x8100FFFF

xps_iic IIC_EEPROM 0x81600000 0x8160FFFF

xps_intc Interrupt_Cntlr 0x81800000 0x8180FFFF

xps_spi SPI_FLASH 0x83400000 0x8340FFFF

xps_sysace SysACE_CompactFlash 0x83600000 0x8360FFFF

xps_timer Dual_Timer_Counter 0x83C00000 0x83C0FFFF

xps_uart16550 RS232_Uart_1 0x84000000 0x8400FFFF

mdm Debug_Module 0x84400000 0x8440FFFF

mpmc DDR3_SDRAM (SDMA) 0x84600000 0x8460FFFF

Table 2: Reference Design File Descriptions

File Name Description

hardware/ The EDK system for this application note.

ready_for_download/

download.bit FPGA bitstream.

xapp1146.cmd Instructions for iMPACT (Xilinx software tool).

xapp1146.opt Commands for XMD.

simpleImage.xilinx-xapp1146 Bootable Linux image.

linux/

dotconfig Linux kernel configuration.

initramfs_minimal.cpio.gz Linux ramdisk image.

xilinx-xapp1146.dts Device tree hardware description.

scripts/

build_rom.pl
Generates a flash image suitable for use with
the enclosed loader application.

mk_download.bin.sh
Converts download.bit to a file suitable for
programming into flash with Linux.

upgrade.sh Script which performs a flash upgrade.

upgrade-image/

manifest Upgrade description file.

http://www.xilinx.com

Executing the Reference Design

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 3

Executing the
Reference
Design

Using HyperTerminal or a similar serial communications utility, map the operation of the utility to
the physical COM port to be used. Then connect the UART of the board to this COM port. In
HyperTerminal, set Bits per Second to 9600, Data Bits to 8, Parity to None, and Flow Control to
None.

Executing the Reference System Using the Pre-Built Bitstream and
the Compiled Software Application

To execute the system using files in the ready_for_download/ directory in the project root
directory, follow these steps:

1. Change directories to the ready_for_download directory.

2. Use iMPACT to download the bitstream by using the following command:

impact -batch xapp1146.cmd

3. Invoke XMD and connect to the processor using the following command:

xmd -opt xapp1146.opt

4. Download and run the Linux executable using the following commands:

dow simpleImage.xilinx-xapp1146
run

5. Proceed to the Programming the Flash with Linux section, using the upgrade files provided
in the ready_for_download/upgrade-image/ area.

upgrade.tgz Upgrade images.

software/

zlib-1.2.3/ Compression library (source and libz.a).

SDK_Hardware_Export/ Hardware system exported to SDK.

SDK_Projects/

standalone_0/ Stand-alone BSP used by loader1 and loader2.

loader1/ Simple stage 1 boot loader.

loader2/

loader2.c Simple stage 2 boot loader.

loader2.ld
Manually modified linker script. The loader
.text is linked to an offset past the start of
DDR.

compiledate.c Automatically generated file with a date string.

datemaker.sh
Script that generates compiledate.c for
each build.

spi_flash.c Read from W25Q64BV flash.

spi_flash.h

Table 2: Reference Design File Descriptions (Cont’d)

File Name Description

http://www.xilinx.com

Executing the Reference Design from XPS for Hardware

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 4

Executing the
Reference
Design from
XPS for
Hardware

To execute the system for hardware using XPS, follow these steps:

1. Open system.xmp in XPS.

2. Select Hardware→ Generate Bitstream to generate a bitstream for the system.

3. Select Device Configuration→ Download Bitstream to download the bitstream.

4. Invoke XMD and connect to the processor using the following command:

xmd -opt xapp1146.opt

5. Download and run the Linux executable using the following commands:

dow simpleImage.xilinx-xapp1146
run

6. Proceed to the Programming the Flash with Linux section, using the upgrade files provided
in the ready_for_download/upgrade-image/ area.

Obtaining the
Software

The user must obtain source code for the Linux kernel and the Linux kernel BSP generator to
complete the tasks described in this application note. These are available on the Xilinx public
GIT server and access portal, http://git.xilinx.com. GIT is a distributed revision control system.
Installation and usage of GIT are beyond the scope of this application note; refer to the Xilinx
application note XAPP1107, Getting Started Using Git for additional information.

Obtaining the Software with GIT

Users who do not have GIT installed or who choose not to use GIT should proceed to the
Obtaining a Snapshot of the Software without GIT section.

Users who already have GIT properly installed can obtain the latest versions of the required
software with the following commands:

1. Obtain the latest Linux 2.6 kernel

$ mkdir <project area>
$ cd <project area>
$ git clone git://git.xilinx.com/linux-2.6-xlnx.git

(OPTIONAL) Revert to the version used with this application note. This version has been
demonstrated to work as described in this document without modification. Perform after cloning
the tree.

$ cd linux-2.6-xlnx
$ git checkout 6e95b504

2. Obtain the latest device tree generator

$ cd <project area>
$ git clone git://git.xilinx.com/device-tree.git

(OPTIONAL) Revert to the version used with this application note. This version has been
demonstrated to work as described in this document without modification. Perform after cloning
the tree.

$ cd device-tree
$ git checkout a2444d9a

Obtaining a Snapshot of the Software without GIT

A snapshot of the source tree can be obtained from git.xilinx.com as a compressed tar file.

The user can navigate to the desired revisions used to create this application note via the
following links:

http://git.xilinx.com/cgi-bin/gitweb.cgi?p=device-tree.git;a=summary

http://git.xilinx.com/cgi-bin/gitweb.cgi?p=linux-2.6-xlnx.git;a=summary

http://git.xilinx.com
http://git.xilinx.com/cgi-bin/gitweb.cgi?p=device-tree.git;a=summary
http://www.xilinx.com
http://git.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp1107.pdf
http://git.xilinx.com/cgi-bin/gitweb.cgi?p=linux-2.6-xlnx.git;a=summary

Flash Organization

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 5

Obtaining a Toolchain Compiler

To build any of the software used in this application note, the user requires an appropriate
MicroBlaze processor toolchain (compiler, linker, etc.). Linux also requires a Root File System.
If the user does not already have these resources available, consult http://xilinx.wikidot.com/.
Toolchain installation is beyond the scope of this application note.

Flash
Organization

The onboard W25Q64BV SPI flash must be logically divided into separate areas to contain the
various objects needed to boot Linux in a stand-alone fashion.Table 3 shows the division
chosen in this application note.

Linux requires an explicit definition of all flash sections. This explicit definition is represented by
Linux as partitions of the flash device, much like fixed disk or any other mass storage partition.
This configuration is presented in Prepare the Device Tree for Linux.

Generate the
Linux BSP

The device tree is a single text file that describes the hardware devices present in the system.
The device tree generator is used to create this BSP.

Note: The user might want to begin with the provided
xapp11406/ready_for_download/linux/xilinx-xapp1146.dts device tree rather than create
one with the device tree generator.

The Linux BSP is generated within the Xilinx SDK. Users should create their own SDK
workspace and specify the hardware system provided with this application note,
software/SDK_Hardware_Export/hw/system.xml. If not automatically prompted when
creating a new workspace, the hardware design can be selected by Hardware Design →
Import Hardware Design. There are many ways of starting SDK, creating a new workspace,
and choosing a hardware design. Here is one example of how to do all three things
simultaneously:

C:\> xps_sdk.bat -workspace c:\xapp\xapp1146\software\my_new_sdk_workspace
-hwspec c:\xapp\xapp1146\software\SDK_Hardware_Export\hw\system.xml

Note: Use of SDK is beyond the scope of this application note, and only the minimal information
required is presented here. The above xps_sdk.bat command is specific to Microsoft Windows;
Linux users must use xps_sdk instead.

1. Copy the device-tree/directory obtained in Obtaining the Software to the software/
directory provided with this application note.

2. Add software/ as a user repository to SDK: Tools → Software Repositories. See
Figure 1.

Table 3: Flash Partitions

Offset Size

FPGA Bitstream 0x00000000 0x0016B000 (1452K)

Linux Kernel 0x0016B000 0x00675000 (6612K)

Loader 0x007E0000 0x00020000 (128K)

http://xilinx.wikidot.com/
http://www.xilinx.com

Generate the Linux BSP

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 6

3. Choose File → New → Board Support Package.

4. Choose Board Support Package Type: device-tree and enter the Project name of
Linux_0. Click Finish. See Figure 2.

X-Ref Target - Figure 1

Figure 1: SDK User Software Repository

X-Ref Target - Figure 2

Figure 2: Generate Linux BSP

X1146_01_021310

X1146_02_021310

http://www.xilinx.com

Patch the Linux Kernel

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 7

5. Enter RS232_Uart_1 in the console device field on the Board Support Package Settings
window and click OK. The file
<user's SDK workspace>/Linux_0/microblaze_0/
libsrc/device-tree_v0_00_x/xilinx.dts is generated.

6. Copy xilinx.dts to
<project area>/linux-2.6-xlnx/arch/microblaze/boot/
dts/xilinx-xapp1146.dts.

Prepare the Device Tree for Linux

The device tree file
<project area>/linux-2.6-xlnx/arch/microblaze/dts/xilinx-xapp1146.dts
is edited to specify the proper kernel command line. The unique Ethernet MAC address is also
specified in this file. The MAC address assigned to the user's board is found on a sticker on the
bottom of the board.

The proper modifications are shown in bold:

chosen {
 bootargs = "console=ttyS0 ip=192.168.1.10
mtdparts=spi32766.0:1452k(bits),6612k(zImage),128k(loader)";
 } ;
...
 SPI_FLASH: xps-spi@83400000 {
 compatible = "xlnx,xps-spi-2.01.b", "xlnx,xps-spi-2.00.a";
 interrupt-parent = <&Interrupt_Cntlr>;
 interrupts = < 4 2 >;
 reg = < 0x83400000 0x10000 >;
 xlnx,family = "spartan6";
 xlnx,fifo-exist = <0x1>;
 xlnx,num-ss-bits = <0x1>;
 xlnx,num-transfer-bits = <0x8>;
 xlnx,sck-ratio = <0x20>;
 spi_flash@0 {
 compatible = "stm,m25p40", "m25p80";
 reg = <0>;
 spi-max-frequency = <10000000>;
 };
 } ;

The flash organization shown in Flash Organization is specified here. An IP address of
192.168.1.10 is statically assigned. An SPI flash is specified on the SPI bus.

Patch the Linux
Kernel

The Linux kernel source must be patched to make use of the onboard Winbond 25Q64BV SPI
Flash device.

The M25P80 MTD driver can correctly operate the W25Q64BV device. The JEDEC ID for the
W25Q must be added to the table of supported devices.

http://www.xilinx.com

Build the Linux Kernel

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 8

1. Edit drivers/mtd/devices/m25p80.c and make the modifications shown in bold:

static struct flash_info __devinitdata m25p_data [] = {
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
 { "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, },
 { "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, },
 { "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, },
 { "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, },
 { "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, },
 { "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, },
 { "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, },
 { "w25q64", 0xef4017, 0, 64 * 1024, 128, SECT_4K, },
};

The drivers for most SPI slaves in the kernel do not presently support the Open Firmware
device tree. The modalias table is used to map the compatible entry "stm,m25p40" chosen for
use in the device tree (see Prepare the Device Tree for Linux) to a driver that has registered
itself with the name "m25p80", as found in
linux-2.6-xlnx/drivers/mtd/devices/m25p80.c:

static struct spi_driver m25p80_driver = {
 .driver = {
 .name = "m25p80",
 .bus = &spi_bus_type,
 .owner = THIS_MODULE,
 },

2. Edit drivers/of/base.c and observe the text shown in bold:

static struct of_modalias_table of_modalias_table[] = {
 { "fsl,mcu-mpc8349emitx", "mcu-mpc8349emitx" },
 { "mmc-spi-slot", "mmc_spi" },
 { "stm,m25p40", "m25p80" },
};

Build the Linux
Kernel

Copy the Ramdisk Image
1. Copy the provided ramdisk image to the kernel tree:

$ cp <edk project>/ready_for_download/linux/initramfs_minimal.cpio.gz
<project area>/linux-2.6-xlnx/

Configure the Kernel

The Linux kernel is configured to include the appropriate drivers needed to access the onboard
flash.

2. Indicate which toolchain is to be used. The below works with a properly installed
MicroBlaze processor toolchain:

$ export CROSS_COMPILE microblaze-unknown-linux-gnu-
$ cd <project area>/linux-2.6-xlnx

3. Copy the default SP605 kernel configuration to use as a starting point.

$ cp arch/microblaze/configs/xilinx_mmu_defconfig .config

4. Build and run the kernel menu configuration application.

$ make ARCH=microblaze menuconfig

Note: The user can choose to begin with the provided
xapp1146/ready_for_download/linux/dotconfig configuration file instead of performing the
configuration process.

Submenus are chosen with <Enter>, options are modified with <Space Bar>.

http://www.xilinx.com

Build the Linux Kernel

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 9

5. Enable Device Drivers → Memory Technology Device (MTD) support using
<Space Bar>, making an asterisk [*] appear. See Figure 3.

6. Choose Device Drivers → Memory Technology Device (MTD) support using <Enter>.

a. Enable MTD partitioning support.

b. Enable Command line partition table parsing.

c. Enable Direct char device access to MTD devices.

d. Enable Caching block device access to MTD devices.

7. Choose Device Drivers → MTD Support → Self-contained MTD device drivers.

a. Enable Support most SPI Flash chips (AT26DF, M25P, M25X, ...). See Figure 4.

X-Ref Target - Figure 3

Figure 3: MTD Support

X1146_03_021310

http://www.xilinx.com

The Loader

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 10

8. Enable Device Drivers → SPI support.

a. Enable Device Drivers → SPI support → Xilinx SPI controller.

9. Exit and save the configuration.

10. Compile the kernel:

$ make ARCH=microblaze simpleImage.xilinx-xapp1146

Note: A prebuilt image, simpleImage.xilinx-xapp1146, is provided in the
ready_for_download area.

The new image is created in:
linux-2.6-xlnx/arch/microblaze/boot/simpleImage.xilinx-xapp1146.

The Loader SPI Flash Boot Methodology

The processor cannot natively fetch and execute instructions from SPI flash. In the hardware
system provided with this application note, the MicroBlaze processor boot vector
(0x00000000) is mapped to 8K of block RAM. A small loader, loader1, runs at startup in this
8K block RAM. The block RAM is initialized to contain loader1 during FPGA configuration (it is
part of the download.bit image). The function of loader1 is to copy the loader2 image from
SPI flash and run it. Loader2, which runs in DDR, is larger and more capable than loader1,
which must fit in the 8K of available block RAM. Loader2 is capable of uncompressing a gzip
archive. The Linux kernel stored in SPI flash has been compressed to maximize the 8 MB of
total available space, and loader2 uncompresses this kernel image to the appropriate location.

Note: If the user does not want to compress the kernel, then the bootloading process can be
accomplished with loader1 alone. Also, if the user wants to increase the amount of block RAM in the
hardware build to 64K, loader2 can be run from block RAM without the need to use loader1. This
application note is focused on using the minimum block RAM and SPI flash storage possible, requiring the
multi-stage boot process described here.

Rather than a loader that parses the ELF headers of the Linux simpleImage directly, the
simpleImage is converted to an ordinary binary file, and a header is prepended to indicate

X-Ref Target - Figure 4

Figure 4: MTD Flash Device Drivers

X1146_04_021310

http://www.xilinx.com

The Loader

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 11

where this binary blob should be copied. This allows the loader (loader 2) to be very small and
simple. See Figure 5.

Generate a Binary Image of the Linux Kernel ELF File

An absolute memory image of the Linux simpleImage is used in the flash, not the ELF file
output by the linker. The Object Copy utility is used to copy segments from the ELF file to a
binary image.

$ mb-objcopy -O binary simpleImage.xilinx-xapp1146 linux.bin

The generated file linux.bin has no relocation information, so the loader does not know
where it should be copied from flash.

The readelf Utility

The readelf utility is used to display the ELF headers of an executable in a textual format. This
data shows how the simpleImage should be relocated to DRAM. The data needed for the flash
loader is shown in bold:

$ mb-readelf -e simpleImage.xilinx-xapp1146

ELF Header:
 Magic: 7f 45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, big endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: <unknown>: baab
 Version: 0x1
 Entry point address: 0x50000000
 Start of program headers: 52 (bytes into file)
 Start of section headers: 4391568 (bytes into file)

X-Ref Target - Figure 5

Figure 5: MicroBlaze Processor SPI Flash Boot Process

SPI FlashBlock RAM

DDR Memory

FPGA Bitstream

Loader 2

Linux

simpleImage
(Compressed)

Loader 1

1)

2)

2)

4)

4)

6)

5)

5)

3)

Loader 2

simpleImage
(vmlinux)

simpleImage
(Compressed)

0xC0000000 0x50000000

0x00000000

0x50800000

Boot Steps
1) Loader 1 (in B lock R AM) executes upon boot
2) Loader 1 copies Loader 2 from flash to DDR
3) Loader 1 branches to Loader 2
4) Loader 2 copies the compressed kernel
 to DDR
5) Loader 2 uncompresses the kernel image
 in DDR to the linked address .
6) Loader 2 branches to the uncompressed
 vmlinux image.
7) Linux boots

X1146_05_022410

http://www.xilinx.com

The Loader

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 12

 Flags: 0x0
 Size of this header: 52 (bytes)
 Size of program headers: 32 (bytes)
 Number of program headers: 3
 Size of section headers: 40 (bytes)
 Number of section headers: 41
 Section header string table index: 38

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 [0] NULL 00000000 000000 000000 00 0 0 0
 [1] .text PROGBITS c0000000 001000 258bd0 00 AX 0 0 16
 ...
 [37] .bss NOBITS c0431000 43009c 02d874 00 WA 0 0 16
 ...
Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 LOAD 0x001000 0xc0000000 0x50000000 0x2fcfb8 0x2fd000 RWE 0x1000
 LOAD 0x2fe000 0xc02fd000 0x502fd000 0x11c6c 0x11c6c RW 0x1000
 LOAD 0x310000 0xc0310000 0x50310000 0x12009c 0x14e874 RWE 0x1000

The data provided by readelf that is needed by the loader is described in Table 4.

The build_rom.pl Script

The script build_rom.pl provided with this application note generates a binary image of the
ELF file using objdump, compresses the binary image with gzip, parses the output of readelf,
and prepends a header suitable for use with a simple loader to the binary image. The file format
is shown in Table 5.

Table 4: Data Provided by readelf

Data Description

LOAD The address where the executable begins and its size. The simpleImage begins
at 0x50000000.

Entry Point The address of the first instruction of the executable.

.bss The Block Started by Symbol (BSS) is not present within the ELF file. This
segment is the location of uninitialized global data. The loader should zero this
memory.

Table 5: Loader Image Header Format

0 "XLNX"

1 Entry point address

2 BSS address

3 BSS size

4 Load address

5 Uncompressed load size

6 Compressed load size

7 <compressed data follows header>

http://www.xilinx.com

The Loader

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 13

Generate the Linux Flash Image

The flash image for the Linux kernel is generated with the build_rom script:

$ <edk project>/ready_for_download/scripts/build_rom.pl

Parsing readelf output for simpleImage.xilinx-xapp1146
Entry: 0x50000000
BSS: 0x50431000 SIZE: 186484
LOAD: 0x50000000
Generating BIN image from elf:
Uncompressed BIN size: 4391068
Compressing BIN image:
Compressed BIN image size: 2565198
Appending header:

The first seven words of the generated binary file contain the expected header information:

$ hexdump -C simpleImage.xilinx-1146.bin |head

00000000 58 4c 4e 58 50 00 00 00 50 43 10 00 00 02 d8 74
00000010 50 00 00 00 00 43 00 9c 00 27 24 4e 1f 8b 08 08
00000020 1b ff 0a 4b 02 03 74 6d 70 2e 62 69 6e 00 ec bd
00000030 0f 54 5c c7 95 27 7c fb 8f a4 b6 d5 13 3d a0 8d
00000040 db 0e 63 b5 22 ec b4 c7 ec f8 81 98 0c f3 2d b3
00000050 69 2f d8 66 13 be 5d d6 e6 24 64 86 99 b4 96 46
00000060 c6 31 67 87 ac f8 14 9c 65 92 96 68 db 64 c2 7e
00000070 c3 1c 63 1b cf 70 36 ad 55 4b 66 14 f6 1c d6 d6
00000080 27 c3 4c 7f ed d6 08 db 78 a2 ef 1b 76 ad 75 18
00000090 47 3b 69 8d e5 f8 01 ca 86 d8 ac dd 40 c3 db df

Import the Software into SDK
Note: This section assumes that the user has performed the steps pertaining to SDK provided in
Generate the Linux BSP.

The provided software needs to be imported into the user’s own SDK workspace.

1. In SDK, choose File → Import.

2. Select Existing SDK Products into Workspace and click Next. See Figure 6.

http://www.xilinx.com

The Loader

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 14

3. Choose Select root directory: and browse to the provided software/SDK_Projects
directory.

4. Select loader1, loader2, and standalone_0 and click Finish. See Figure 7.

Note: Choose Yes if prompted to overwrite any existing files.

X-Ref Target - Figure 6

Figure 6: Import Existing SDK Projects into Workspace

X-Ref Target - Figure 7

Figure 7: Select Existing SDK Projects Directory

X1146_06_021310

X1146_07_021310

http://www.xilinx.com

The Loader

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 15

SDK automatically builds the imported software. If the user's SDK workspace is not located
immediately under the provided software/ directory, as shown in Generate the Linux BSP, the
loader2 application will fail to build. This is addressed in the loader2 section.

loader1

The simple stage 1 boot loader, loader1 (provided with this application note), is a Xilinx
stand-alone BSP application. The linker script provided with this application was created with
the Generate Linker Script feature in SDK, specifying that all segments apart from the heap and
stack should be in block RAM. The heap and the stack are assigned to DDR memory.

Fit loader1 in 8K

Because they consume lots of memory, loader1 avoids the use of the derivatives of printf(). The
application and the stand-alone BSP are configured to compile optimized for size -Os. These
actions alone are not sufficient for loader1 to fit in the 8K available. The BSP and application
files are compiled with the -ffunction-sections option. This causes the compiler to
place each function in its own section in the generated object file. For example, main() is no
longer in the .text segment, but rather in .text.main. The application is linked with the
-Wl,-gc-sections parameter. Ordinarily, if any single function from an object file is used,
the linker includes the entire object file in the linked output. The -gc-sections option only
includes those segments that are used; the rest are discarded. Because everything has been
compiled with function-sections, each function is in its own segment; the linker discards all
functions not used by the loader1 application. This greatly reduces the size of the final
executable.

Residing in block RAM, loader1 is provided as part of the FPGA configuration in
download.bit. A download.bit with an embedded ELF file can only be indirectly created
within SDK by choosing to configure the FPGA using SDK. Alternately, the loader1 ELF can be
used as an ELF-only project to create a download.bit in XPS. If the user does not want to
configure the FPGA in SDK for the sole purpose of creating this file, or does not want to use
SDK for this process, the following commands are used:

$ cd <unzipped project area>/xapp1146/software
$ data2mem -bm SDK_Export/hw/system_bd.bmm -bt SDK_Export/hw/system.bit
-bd SDK_Projects/loader1/Release/loader1.elf tag microblaze_0 -o b
download.bit

A download.bit containing loader1 is created in the <unzipped project area>/
xapp1146/software directory.

loader2

The simple stage 2 boot loader, loader2 (provided with this application note), is a XIlinx
stand-alone BSP application. As noted in the Import the Software into SDK section, the user
might need to modify the build properties of this project in SDK for it to build properly. The zlib
library is used by loader2 to uncompress gzip images. The location of this library and included
files need to be specified. The existing location specified will not work for the user if the SDK
Workspace directory is not located immediately under the provided software/ directory, as
shown in the Generate the Linux BSP section. If necessary, this can be remedied with the
following steps:

1. Right-click on the loader2 project and choose Properties.

2. In the loader2 Properties window, choose C/C++ Build.

a. Choose Include Paths. See Figure 8.

http://www.xilinx.com

The Loader

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 16

b. Delete (X) any present references to zlib.

c. Add (+) the present location of the software/zlib-1.2.3 directory provided with
this application note.Choose Libraries.

d. Delete (X) any present references to zlib from the Library path.

e. Add (+) the present location of the software/zlib-1.2.3 directory provided with
this application note. See Figure 9.

f. Click OK. Loader2 builds.

The linker script provided with this application note was created with the Generate a Linker
Script feature in SDK, specifying that all segments should be in DDR.

The SDK linker file generator links items at the beginning of the selected memory. The Linux
kernel is relocated to the beginning of memory by loader2; therefore, loader2 cannot reside at

X-Ref Target - Figure 8

Figure 8: Configure SDK Include Path

X-Ref Target - Figure 9

Figure 9: Configure SDK Libraries

X1146_08_021310

X1146_09_021310

http://www.xilinx.com

The Loader

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 17

this location. The generated linker script has been edited so that loader2 is placed at an offset
beyond the expected size of the Linux kernel.

Stand-alone BSP applications are meant to run without the assistance of any operating system
or loader. Code is placed at the MicroBlaze processor reset vector (0x00000000) directly.
Loader2 cannot operate in this manner. The application start is changed from the processor
boot vector to instead immediately precede the rest of the loader2 application (with no “empty”
space in between) by editing the linker script.

loader2.ld:

MEMORY
{
 LocalMemory_Cntlr_I_LocalMemory_Cntlr_D : ORIGIN = 0x00000050, LENGTH =
0x00001FB0
/*
 DDR3_SDRAM_MPMC_BASEADDR : ORIGIN = 0x50000000, LENGTH = 0x08000000
 */
 /* Loader 2 must not start at the beginning of DDR as this is the
 * location where it will copy the kernel.
 */
 DDR3_SDRAM_MPMC_BASEADDR : ORIGIN = 0x50800000, LENGTH = 0x07800000
}

...

SECTIONS
{

/* ORIGINAL HERE, MODIFIED BELOW:
 .vectors.reset 0x00000000 : {
 *(.vectors.reset)
 }
 .vectors.sw_exception 0x00000008 : {
 *(.vectors.sw_exception)
 }
 .vectors.interrupt 0x00000010 : {
 *(.vectors.interrupt)
 }
 .vectors.hw_exception 0x00000020 : {
 *(.vectors.hw_exception)
 }
*/

/* MODIFIED VECTORS. Nothing is at the hardware vectors any longer. */
.vectors.reset : {
 *(.vectors.reset)
} > DDR3_SDRAM_MPMC_BASEADDR
.vectors.sw_exception : {
 *(.vectors.sw_exception)
} > DDR3_SDRAM_MPMC_BASEADDR
.vectors.interrupt : {
 *(.vectors.interrupt)
} > DDR3_SDRAM_MPMC_BASEADDR
.vectors.hw_exception : {
 *(.vectors.hw_exception)
} > DDR3_SDRAM_MPMC_BASEADDR

The application and the stand-alone BSP are configured to compile optimized for size -Os.
After editing the loader.ld file, the preparations are completed. The loader must be compiled,
and the loader ELF file created. The user should be familiar enough with the Xilinx SDK
software to accomplish this without further instruction.

http://www.xilinx.com

The FPGA Bitstream

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 18

An image of the loader suitable for programming into flash is generated with the objcopy utility.

$ mb-objcopy -O binary loader2.elf loader2.bin

The SDK project has already been configured to automatically generate the image file
loader2.bin when the application is built.

The FPGA
Bitstream

The Spartan-6 FPGA can be configured with an SPI flash. The same flash that holds Linux, the
Linux loader, and the Linux file system is used to configure the FPGA. This allows the design to
be entirely stand-alone, eliminating the need to configure the FPGA with iMPACT software (by
Xilinx).

1. Set the SP605 configuration switches so that the FPGA is configured with SPI_UP
configuration 0. SW1 is set to '10'.

2. An image file of suitable format is prepared from the download.bit file generated in
Loader1.

$ cd <unzipped project area>/xapp1146/software
$ promgen -w -p bin -spi -c FF -o download.bin -u 0 download.bit

A previously generated download.bin is available in the
ready_for_download/upgrade-image/upgrade.tgz archive.

Note: The bitstream must use the Configuration Clock as the Startup Clock. This has already been
specified in the EDK project file etc/bitgen.ut. The following line is an excerpt from the bitgen.ut
file, indicating the applicable modification:

-g StartUpClk:CCLK

X-Ref Target - Figure 10

Figure 10: SP605 M0 M1 Settings for SPI Configuration

X1146_10_021310

http://www.xilinx.com

Programming the Flash with Linux

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 19

Programming
the Flash with
Linux

The previously generated download.bin, loader2.bin, and
simpleImage.xilinx-xapp1146.bin files are ready to be programmed into flash at the
offsets indicated in Flash Organization. This application note only discusses using Linux to
upgrade the flash.

Retrieving Upgrade Images Over the Network

The upgrade images are retrieved over the network. As seen in Prepare the Device Tree for
Linux, a static IP address of 192.168.1.10 is assigned to the SP605.

IP configuration and addressing are beyond the scope of this application note. While more
complex configurations are possible, the user should directly connect the SP605 to an FTP
server that has been manually configured with the IP address of 192.168.1.1 to successfully
perform the tasks outlined here.

Manual Flash Programming

To program the flash with new flash images, the files must be made available to the running
Linux image. There are numerous ways this can be accomplished, such as FTPing the files
over the network, the System ACE™ tool, or USB mass storage. This application note only
discusses files retrieved over the network.

Fetch the image to be programmed using the wget utility.

:/> cd /tmp
:/tmp> wget ftp://192.168.1.1/download.bin
Connecting to 192.168.1.1 (192.168.1.1:21)
download.bin 100% |*******************************| 1449k --:--:-- ETA
:/tmp>

Erase the Partition

The FPGA bitstream is programmed first. Before programming the new image, it is necessary
to erase the appropriate flash region. The first flash partition corresponds to the bitstream:

:/> cat /proc/mtd
dev: size erasesize name
mtd0: 0016b000 00001000 "bits"
mtd1: 00675000 00001000 "zImage"
mtd2: 00020000 00001000 "loader"

Erase MTD0:

:/> flash_eraseall /dev/mtd0
Erasing 4 Kibyte @ 16a000 -- 99 % complete.

Program Download.bin into the Flash
:/> cd /tmp
:/tmp> cp download.bin /dev/mtd0

Automated Flash Upgrade

The script upgrade.sh provided with this application note automates the upgrade
procedure. It can use upgrade images over the network. If a URL is provided, the manifest file
is retrieved over the network from the specified location. The sample manifest provided with this
application note is shown below:

version: 1.0
tarball: upgrade.tgz
image: mtd0 download.bin
image: mtd1 simpleImage.xilinx-xapp1146.bin
image: mtd2 loader.bin

http://www.xilinx.com

Programming the Flash with Linux

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 20

The manifest file specifies a version number (1.0). This version coincides with the file /version
in the Linux file system:

root:/> cat /version
version: 1.0

The tarball field indicates which compressed tar file on the network server contains the upgrade
images. In this instance, upgrade.tgz is used.

The image: fields denote which flash partition is programmed with which image file. The image
files are located within the compressed tar image.

Generate the Tarball

To generate the tarball:

1. Place all the image files in a subdirectory images:

$ ls images/
download.bin loader2.bin simpleImage.xilinx-xapp1146.bin

2. Create a compressed tar file from the images:

$ cd images
$ tar -czvf ../upgrade.tgz *
download.bin
loader2.bin
simpleImage.xilinx-xapp1146.bin

Note: Previously generated manifest and upgrade.tgz files are provided in the
<EDK project>/ready_for_download/upgrade-image/ directory.

Upgrade the Images Over the Network

The upgrade.sh script uses the wget utility to obtain the manifest and tarball files. Any URL
supported by wget (FTP, HTTP) should function.

Note: Once the upgrade has begun, the board must not be powered off until the upgrade is completed.

1. Place the manifest and tarball files on the FTP server and run the upgrade.sh script on
the SP605:

:/> upgrade.sh ftp://192.168.1.1
Network upgrade from ftp://192.168.1.1
Connecting to 192.168.1.1 (192.168.1.1:21)
manifest 100% |*******************************| 127 --:--:-- ETA
Upgrade manifest version 1.0 found
Currently installed version: 1.0
Proceed? (y/n)
y
Connecting to 192.168.1.1 (192.168.1.1:21)
upgrade.tgz 100% |*******************************| 2446k --:--:-- ETA
Extracting: /tmp/upgrade.tgz
IMAGES: download.bin simpleImage.xilinx-xapp1146.bin loader2.bin

Upgrading bitstream
Erasing MTD0
Erasing 4 Kibyte @ 16a000 -- 99 % complete.
Programming MTD0

Upgrading Linux kernel
Erasing MTD1
Erasing 4 Kibyte @ 674000 -- 99 % complete.
Programming MTD1

Upgrading loader
Erasing MTD2

http://www.xilinx.com

Reference Design Matrix

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 21

Erasing 4 Kibyte @ 1f000 -- 96 % complete.
Programming MTD2

Power Cycle the SP605

This is the expected console output, which would be seen if the power cycle is successful.

Xilinx Loader1 (11/23/09 14:08):
Xilinx Loader1: done.

Xilinx Loader2 (11/23/09 14:00):
Entry: 0x50000000
BSS: 0x50431000
BSS Size: 0x0002D874
Load Addr: 0x50000000
Load Size(u): 0x0043009C
Load Size(c): 0x0027244E
Copy compressed image from flash offset 0x0016B000 to DDR 0x5080BD00
Uncompress image:
Uncompress image: done. Uncompressed 4391068 bytes.
Launch:

Linux version 2.6.31-12323-g6e95b50-dirty (bhill@xaqbhill40) (gcc version
4.1.2)
<kernel boot messages follow>

Reference
Design Matrix

Table 6: Reference Design Information

Developer Name Xilinx

Target Devices Spartan-6 devices

Source Code Provided No custom IP is used in the reference design

Source Code Format N/A

Design Uses Code/IP from an Existing
Reference Design / Application Node, Third
Party, or CORE Generator Software

No

Simulation

Functional Simulation Performed No

Timing Simulation Performed No

Testbench Used for Functional Simulations
Provided N/A

Testbench Format N/A

Simulator Software Used/Version N/A

SPICE/IBIS Simulations No

Implementation

Synthesis Software Tools Used/Version XST

Implementation Software Tools Used/Version EDK design suite, version 11.4

Static Timing Analysis Performed No

Hardware Verification

Hardware Verified Yes

Hardware Used for Verification SP605 development board

http://www.xilinx.com

Additional Information

XAPP1146 (v1.0) May 5, 2010 www.xilinx.com 22

Additional
Information

1. UG111, Embedded System Tools Reference Manual

2. http://xilinx.wikidot.com (Xilinx Open Source documentation)

3. XAPP1140, Embedded Platform Software and Hardware In-the-Field Upgrade Using Linux
(for Virtex-5 FXT devices)

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Date Version Description of Revisions

05/05/10 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp1140.pdf
http://xilinx.wikidot.com
http://www.xilinx.com/support/documentation/sw_manuals/edk92i_est_rm.pdf

	Embedded Platform Software and Hardware In-the-Field Upgrade Using Linux
	Summary
	Included Designs
	Introduction
	Target Audience
	Hardware and Software Requirements
	Reference Design Specifics
	Address Map
	Support Files

	Executing the Reference Design
	Executing the Reference System Using the Pre-Built Bitstream and the Compiled Software Application

	Executing the Reference Design from XPS for Hardware
	Obtaining the Software
	Obtaining the Software with GIT
	Obtaining a Snapshot of the Software without GIT
	Obtaining a Toolchain Compiler

	Flash Organization
	Generate the Linux BSP
	Prepare the Device Tree for Linux

	Patch the Linux Kernel
	Build the Linux Kernel
	Copy the Ramdisk Image
	Configure the Kernel

	The Loader
	SPI Flash Boot Methodology
	Generate a Binary Image of the Linux Kernel ELF File
	The readelf Utility
	The build_rom.pl Script
	Generate the Linux Flash Image
	Import the Software into SDK
	loader1
	Fit loader1 in 8K

	loader2
	loader2.ld:

	The FPGA Bitstream
	Programming the Flash with Linux
	Retrieving Upgrade Images Over the Network
	Manual Flash Programming
	Erase the Partition
	Program Download.bin into the Flash

	Automated Flash Upgrade
	Generate the Tarball

	Upgrade the Images Over the Network
	Power Cycle the SP605

	Reference Design Matrix
	Additional Information
	Revision History
	Notice of Disclaimer

